1. Summary

Super-resolution of MDI Solar Magnetograms: Performance Metrics and Error Estimation

Paul J. Wright¹, Xavier Gitiaux², Anna Jungbluth³, Shane A. Maloney⁴, Carl Shneider⁵, Alfredo Kalaitzis⁶, Michel Deudon⁻, Atılım Güneş Baydin³, Yarin Gal³, & Andrés Muñoz-Jaramillo⁶

1 Dept. of Physics, Stanford University | pjwright@stanford.edu, 2 George Mason University, 3 Oxford University, 4 Trinity College Dublin, 5 Centrum Wiskunde and Informatica, 6 Element AI, 7 École Polytechnique, 8 SouthWest Research Institute

Aim: Develop an approach to convert and upscale line-of-sight magnetic field data to a reference survey in order to understand long-term variability of the magnetic field on time-scales larger than the lifespan of a single instrument.

a Data Pre-Processing

- Standardize the Sun's orientation and distance from the detector such that the solar radius is constant over time
- 2. Register & shift individual 128" x 128" patches (see in set regions, **Figure 1**) to account for orbital differences.

b Neural Network Architecture

We use an Encoder-Decoder architecture based on High-Res-Net (see, github.com/ElementAl/HighRes-net). The trained Neural Network (NN) output is shown in Figure 2.

C Loss Functions & Metrics

To train our supervised NN, we include a range of terms alongside MSE (mean-squared-error) loss, and evaluate on additional performance metrics.

1. Loss Functions

Histogram: The magnetic field distribution is non-Gaussian; by implementing a *differentiable* histogram, we better preserve the observed distribution of magnetic field.

Structural Similarity Metric (SSIM): Measure the perceived similarity between images.

Gradients: Preserve the gradients of the magnetic field.

2. Performance Metrics

Information Entropy: To understand the informational content of the output over all spatial scales, and to diagnose hallucination in the NN.

d Error Estimation

We use a Bayesian framework as in Kendall & Gal (2017) that decomposes uncertainty in to two components: *epistemic* (ignorance of the true data generating process), and *aleatoric* (the inherent noise). In practice, we implement this by adding Monte Carlo (MC) dropout in each convolutional layer, and track both the mean and variance of the magnetic field values.

Conclusions & Future Work

- To our knowledge, this is the first application of Bayesian Neural Networks to a super-resolution problem.
- Earlier versions of this work were published in workshops at NeurlPS 2019 (Gitiaux et al 2019, arxiv: 1911.01486; Jungbluth et al 2019, arxiv: 1911.01490).
- Shortly, we will provide test users with the super-resolution output to understand the suitability for various science tasks.



